A recommender system, or a recommendation system, is a subclass of information filtering system that seeks to predict the "rating" or "preference" a user would give to an item.Recommender system has the ability to predict whether a particular user would prefer an item or not based on the user's profile. Recommender systems are beneficial to both service providers and users [3]. They reduce transaction costs of finding and selecting items in an online shopping environment.
Ranking-Ranking is a core task in recommender systems, which aims at providing an ordered list of items to users. Typically, a ranking function is learned from the labeled dataset to optimize the global performance, which produces a ranking score for each individual item.
Effects-Recommendation systems today exert a strong influence on consumer behavior and individual perceptions of the world. By using collaborative filtering (CF) methods to create recommendations, it generates a continuous feedback loop in which user behavior becomes magnified in the algorithmic system.